Define $D_i^h u = \frac{u(x+he_i)-u(x)}{h}$, and let $u \in L^{\infty}(\Omega,\mathbb{R}^n) \cap W^{1,2}(\Omega,\mathbb{R}^n)$ be continuous, with $\Omega \subseteq \mathbb{R}^m$ solve

$$\int_{\Omega} B^k(u, \nabla u) v^k = \int_{\Omega} \sum_{i=1}^m u_{,i}^k v_{,i}^k \quad \forall v \in L^{\infty}(\Omega, \mathbb{R}^n) \cap W_0^{1,2}(\Omega, \mathbb{R}^n), \forall i = 1, ..., n$$

$$\tag{1}$$

and $B^k = B^k(z,p)$ a quadratic form in p_k and $C^{p,\gamma}(\mathbb{R}^n)$ and bounded in z(i.e. $B^k = b^k_{ij}(z)p^i_kp^j_k$ so $B^k(u,\nabla u) = b^k_{ij}(u)u^i_{,k}u^j_{,k}$). In particular $B \in C^1(\mathbb{R}^n \times \mathbb{R}^{m \times n})$. We will show the following:

Theorem 1. Let $u \in L^{\infty}(\Omega, \mathbb{R}^n) \cap W^{1,2}(\Omega, \mathbb{R}^n)$ with $\Omega \subseteq \mathbb{R}^m$ a bounded domain solve (1). Then for each $U \subseteq \overline{U} \subseteq \Omega$ it holds that $u \in W^{2,2}(U)$.

We will proceed in steps.

Define $\eta = \zeta^2$ as a cutoff function for U. Then for small enough |h| > 0 it holds that $w = D_i^{-h}(\eta^2 D_i^h u) \in L^{\infty}(\Omega, \mathbb{R}^n) \cap W_0^{1,2}(\Omega, \mathbb{R}^n)$.

Now, we shall investigate certain related linear equations.

Let $x \in \Omega$ with $d(x, \partial\Omega) > 2h$ and define

$$(1-t)(x_1, P_1) + t(x_2, P_2) = (c_1(t), c_2(t)) \in \mathbb{R}^n \times \mathbb{R}^{m \times n}$$

where $x_1 = u(x), x_2 = u(x + he_i)$ $P_1 = \nabla u(x), P_2 = \nabla u(x + he_i)$.

Lemma 2. It holds that

$$D_i^h B^k(u, \nabla u)(x) = \sum_{l=1}^n (D_i^h u^l) \int_0^1 b_{ij,l}^k(c_1(t)) c_2^{ki}(t) c_2^{kj}(t) dt + \sum_{\alpha=1}^n (D_i^h u_{,k}^{\alpha}) \int_0^1 (b_{\alpha j}^k + b_{j\alpha}^k) c_2^{kj}(t) dt$$

under the above hypotheses

Proof. By the fundamental theorem of calculus

$$B^{k}(x_{2}, P_{2}) - B^{k}(x_{1}, P_{1}) = \int_{0}^{1} \frac{d}{dt} B^{k}((1 - t)(x_{1}, P_{1}) + t(x_{2}, P_{2}))dt$$

Now, it holds that as $B \in C^1(\mathbb{R}^n \times \mathbb{R}^{m \times n})$ by the chain rule

$$\frac{d}{dt}B^k((1-t)(x_1, P_1) + t(x_2, P_2)) = \sum_{l=1}^n B_{x_l}^k(c(t))c_{1,t}^{kl}(t) + \sum_{\alpha} B_{p_k^{\alpha}}^k(c(t))c_2^{kj}(t)$$

On the other hand

$$B_{x_l}^k(c(t)) = b_{ij,l}^k(c_1(t))c_2^{ki}(t)c_2^{kj}(t)$$
$$B_{\alpha}^k(c(t)) = (b_{\alpha i}^k + b_{i\alpha}^k)c_2^{kj}(t)$$

Substitute this and we are done.

Now, we define $a_l^k = \eta^2 \int_0^1 b_{ij,l}^k(c_1(t)) c_2^{ki}(t) c_2^{kj}(t) dt$ and $c_\alpha^k = \eta^2 \int_0^1 (b_{\alpha j}^k + b_{j\alpha}^k) c_2^{kj}(t) dt$

Lemma 3. With everything as above $D_i^h u$ solves the linear system

$$\int_{\Omega} a_l^k u^l u^k + c_{\alpha}^k u_{,k}^{\alpha} u^k = \int_{\Omega} \sum_{i=1}^m u_{,j}^k u_{,j}^k$$

Proof. Substitute v = w into equation (1)

Now, we have that it holds that

$$\sup_{k,i,j,l} |b_{ij,l}^k| \le \sup_{k,i,j,l} |b_{ij,l}^k(0)| + \sup_{k,i,j,l} ||b_{ij,l}^k||_{C^{1,\gamma}} (||u||_{\infty})^{\gamma} = C_1$$

$$\sup_{k,i,j} |b_{ij}^k| \le C_2$$

In particular by substitution:

Lemma 4. It holds that

$$\sup_{l} |a_{l}^{k}| \leq C_{3} \eta^{2} \sum_{i=1}^{n} u_{,k}^{i} u_{,k}^{i} = C_{3} \eta^{2} |u_{,k}|^{2} \leq C_{3} \eta^{2} |\nabla u|^{2}$$

and

Lemma 5. It holds that $\sup_{k,\alpha} |c_{\alpha}^k| \leq C_3 \eta^2 |\nabla u|$

where $C_3 = C_3(\|u\|_{\infty}, \gamma, \sup_{k,i,j,l} \left\|b_{ij,l}^k\right\|_{C^{1,\gamma}}, \sup_{k,i,j,l} |b_{ij,l}^k(0)|)$. On the other hand this yields

Proposition 6. It holds that

$$\int_{\Omega} \eta^2 |D_i^h \nabla u|^2 \le C_4 \int_{\Omega} \eta^2 |\nabla u|^2 |D_i^h u|^2 dx$$

Proof. It is immediate that

$$\int_{\Omega}\eta^2\sum_{i=1}^m|D_i^hu_{,j}^k|^2\leq \int_{\Omega}|a_l^kD_i^hu^lD_i^hu^k|+|c_{\alpha}^kD_i^hu_{,k}^{\alpha}D_i^hu^k|$$

Now,

$$\int_{\Omega} |a_{l}^{k} D_{i}^{h} u^{l} D_{i}^{h} u^{k}| \leq \int_{\Omega} C_{3} \eta^{2} |\nabla u|^{2} \sum_{l=1}^{n} |D_{i}^{h} u^{l} D_{i}^{h} u^{k}| \leq \int_{\Omega} C_{3} c_{1} \eta^{2} |\nabla u|^{2} |D_{i}^{h} u|^{2}$$

and

$$\int_{\Omega}|c_{\alpha}^kD_i^hu_{,k}^{\alpha}D_i^hu^k|\leq \int_{\Omega}C_3\eta^2|\nabla u||D_i^hu_{,k}^{\alpha}||D_i^hu^k|\leq \frac{c_{2,\varepsilon}}{n}\int_{\Omega}\eta^2|\nabla u|^2|D_i^hu^k|^2+\frac{\varepsilon}{n}\int_{\Omega}|D_i^hu_{,k}^{\alpha}|^2$$

and finally

$$|D_i^h u_{,k}^\alpha|^2 \le |D_i^h \nabla u|^2$$

Then adding them we find that

$$\int_{\Omega} \eta^{2} \sum_{j=1}^{m} |D_{i}^{h} u_{,j}^{k}|^{2} \leq \left(1 + \frac{c_{2,\varepsilon}}{n}\right) \int_{\Omega} C_{3} c_{1} \eta^{2} |\nabla u|^{2} |D_{i}^{h} u|^{2} + \frac{\varepsilon}{n} \int_{\Omega} |D_{i}^{h} \nabla u|^{2}$$

In particular by taking $\varepsilon = \frac{1}{2}$ and bringing the second term over to the right side we get

$$\int_{\Omega} \eta^{2} |D_{i}^{h} \nabla u|^{2} \leq 2(1 + \frac{c_{2, \frac{1}{2}}}{n}) \int_{\Omega} C_{3} c_{1} \eta^{2} |\nabla u|^{2} |D_{i}^{h} u|^{2}$$

We must now estimate $\eta^2 |\nabla u|^2 |D_i^h u|^2$ through the use of the original system.

Let $B = B_{2R}(y)$ for some $y \in \Omega$ with $d(x, \partial\Omega) > \max\{2h, R\}$ and let $v = \eta^2(u - u_B)|D_i^h u|^2$. We adjust η so it has support contained in $B_{2R}(y)$ and is 1 on B_R and pick R possibly even smaller so that $osc_B(u) \leq \frac{1}{2}$

Then we get

$$v_{,j} = 2\eta \eta_{,j}(u - u_B)|D_i^h u|^2 + \eta^2 u_{,j}|D_i^h u|^2 + 2\eta^2 (u - u_B)D_i^h u \cdot D_i^h u_{,j}$$

Thus we get

Lemma 7. It holds that

$$\int_{\Omega} \sum_{i=1}^{m} u_{,i}^{k} v_{,i}^{k} = \int_{\Omega} \sum_{j=1}^{m} 2\eta \eta_{,j} (u_{,j}^{k} (u - u_{B})^{k}) |D_{i}^{h} u|^{2} + \int_{\Omega} \sum_{j=1}^{m} \eta^{2} |u_{,j}^{k}|^{2} |D_{i}^{h} u|^{2} dx$$
$$+ \int_{\Omega} \sum_{j=1}^{m} 2\eta^{2} (u_{,j}^{k} (u - u_{B})^{k}) D_{i}^{h} u \cdot D_{i}^{h} u_{,j}$$

This implies immediately that

Proposition 8. It holds that

$$\int_{\Omega} |\nabla u|^{2} |D_{i}^{h} u|^{2} \leq K_{1} osc_{B}(u) \int_{\Omega} \eta^{2} |D_{i}^{h} \nabla u|^{2} + K_{2} \int_{\Omega} \eta |\nabla \eta|^{2} |D_{i}^{h} u|^{2}$$

where $K_1 = K_1(m, n, \sup_{k,i,j} |b_{ij}^k|)$ and $K_2 = K_2(R, n, ||u||_{\infty})$

Proof. We have that

$$\left| \int_{\Omega} \sum_{i=1}^{m} u_{,i}^{k} v_{,i}^{k} \right| \leq \int_{\Omega} |B^{k}| \eta^{2} |u - u_{B}| |D_{i}^{h} u|^{2} \leq mn \sup_{k,i,j} |b_{ij}^{k}| \int_{\Omega} |\nabla u|^{2} \eta^{2} |u - u_{B}| |D_{i}^{h} u|^{2}$$

and we will estimate the three terms in the prior lemma.

First off, since

$$|\eta^2|u - u_B| \le \frac{1}{|B|} \int_B \sup_{y \in B} |u(y) - u(x)| = osc_B(u) \le \frac{1}{2}$$

it holds that

$$\begin{split} \int_{\Omega} |2\eta^{2}(u_{,j}^{k}(u-u_{B})^{k})D_{i}^{h}u \cdot D_{i}^{h}u_{,j}| &\leq \frac{1}{2} \int_{\Omega} \eta^{2}|\nabla u|^{2}|D_{i}^{h}u|^{2} + \frac{1}{2} \int_{\Omega} \eta^{2}|u-u_{B}|^{2}|D_{i}^{h}u_{,j}|^{2} \\ &\leq \frac{1}{4n} \int_{\Omega} \eta^{2}|\nabla u|^{2}|D_{i}^{h}u|^{2} + C_{n}osc_{B}(u) \int_{\Omega} \eta^{2}|D_{i}^{h}\nabla u|^{2} \end{split}$$

Now, clearly since

$$|\nabla u| \le \frac{1}{2}(1 + |\nabla u|^2)$$

it holds

$$\int_{\Omega} 2\eta |\eta_{,j}| |u_{,j}^{k}(u - u_{B})^{k}| |D_{i}^{h}u|^{2} \leq \int_{\Omega} 2\eta |\nabla \eta| |\nabla u| |u - u_{B}| |D_{i}^{h}u|^{2}$$

$$\leq \frac{\|u\|_{\infty}}{C_{R,\eta,n}} \int_{\Omega} \eta^{2} |\nabla \eta|^{2} |D_{i}^{h}u|^{2} + \frac{1}{4n} \int_{\Omega} \eta^{2} |\nabla u|^{2} |D_{i}^{h}u|^{2}$$

Thus

$$\int_{\Omega} \sum_{j=1}^{m} \eta^{2} |u_{,j}^{k}|^{2} |D_{i}^{h}u|^{2} dx \leq \frac{1}{2n} \int_{\Omega} \eta^{2} |\nabla u|^{2} |D_{i}^{h}u|^{2} + (C_{n} + mn \sup_{k,i,j} |b_{ij}^{k}|) osc_{B}(u) \int_{\Omega} \eta^{2} |D_{i}^{h}\nabla u|^{2} + \frac{\|u\|_{\infty}}{C_{R,\eta,n}} \int_{\Omega} \eta^{2} |\nabla \eta|^{2} |D_{i}^{h}u|^{2} dx \leq \frac{1}{2n} \int_{\Omega} \eta^{2} |\nabla u|^{2} |D_{i}^{h}u|^{2} + (C_{n} + mn \sup_{k,i,j} |b_{ij}^{k}|) osc_{B}(u) \int_{\Omega} \eta^{2} |D_{i}^{h}\nabla u|^{2} + \frac{\|u\|_{\infty}}{C_{R,\eta,n}} \int_{\Omega} \eta^{2} |\nabla \eta|^{2} |D_{i}^{h}u|^{2} dx$$

so in particular

$$\int_{\Omega} |\nabla u|^2 |D_i^h u|^2 \leq 2n(C_n + mn \sup_{k,i,j} |b_{ij}^k|) osc_B(u) \int_{\Omega} \eta^2 |D_i^h \nabla u|^2 + \frac{2n \|u\|_{\infty}}{C_{R,\eta,n}} \int_{\Omega} \eta^2 |\nabla \eta|^2 |D_i^h u|^2$$

We finally may bound the second order difference quotients:

Lemma 9. It holds that there are are constants

$$A_1 = A_1(m,n,\sup_{k,i,j}|b_{ij}^k|,\sup_{k,i,j,l}|b_{ij,l}^k|,\gamma,\sup_{k,i,j,l}\left\|b_{ij,l}^k\right\|_{C^{1,\gamma}},\sup_{k,i,j,l}|b_{ij,l}^k(0)|,\|u\|_{\infty})$$

and

$$A_{2} = A_{2}(m, n, \gamma, \sup_{k, i, j, l} \left\| b_{ij, l}^{k} \right\|_{C^{1, \gamma}}, \sup_{k, i, j, l} |b_{ij, l}^{k}(0)|, \left\| u \right\|_{\infty}, R)$$

such that

$$\int_{\Omega} \eta^2 |D_i^h \nabla u|^2 \le A_1 osc_B(u) \int_{\Omega} \eta^2 |D_i^h \nabla u|^2 + A_2 \|\nabla u\|_{2;\Omega}$$

and so let $U \subseteq \bar{U} \subseteq \Omega$ so that \bar{U} is compact. We note that $\bar{\Omega}$ is also compact and so $osc_B(u)$ depends only on R, not on y. Take $2R < 2h < d(x, \partial\Omega)$ and shrink it so that $A_1 osc_B(u) < \frac{1}{2}$. Then it is immediate

Proposition 10. It holds that for $y \in \bar{U}$ that

$$\int_{B_{R}(u)} |D_{i}^{h} \nabla u|^{2} \leq \frac{1}{(1 - A_{1} osc_{B}(u))} A_{2} \|\nabla u\|_{2;\Omega}$$

so that in particular $u \in W^{2,2}(B_R(y))$ with $||u||_{2,2;B_R(y)} \le (1 + \frac{1}{(1 - A_1 osc_B(u))} A_2) ||\nabla u||_{2;\Omega}$

and so

Theorem 11. It holds that $u \in W^{2,2}(U)$ with $||u||_{2,2;U} \leq (1 + \frac{1}{(1-A_1 osc_{B_R}(u))}A_2) ||\nabla u||_{2;\Omega}$