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Geometric Variational Problems in General

Two Classes:

1) E,F two spaces

Ex: Harmonic maps:  M,N Riemannian manifolds

2) E a space,

Ex: Plateau’s problem, given a closed curve c in

Can sometimes go 2)                1).  



Fundamental Lemma of the Calculus of 
Variations

Lemma: Suppose 

Then f=0

Corollary: This remains true if [0,1] is replaced by a bounded domain in 

Corollary: This remains true if [0,1] is replaced by a closed, oriented Riemannian manifold and its 

volume form



Fundamental Lemma of the Calculus of 
Variations Pt. 2

Let M be a (closed, oriented)Riemannian manifold with volume form dV. Suppose that 

   Then f=const.

Idea:Write   so with some rearrangement we get

Now, the standard fundamental lemma of the calculus of variations implies that 



The Isoperimetric Inequality in Dimension n

The problem is formulated generally as a class 2) variational problem.

In this presentation we will want connected boundary and usually a boundary represented as a 

parametric hypersurface. The problem states that if k>0 then the minimizer is a ball, and this 

minimizer is unique(for a fixed area or volume).



What is Special in n=2?

In dimension two it holds that the boundary of the unit ball is the circle. Thus since             

(or =0) it suggests that this is the only nontrivial dimension where we may apply Fourier series.

Similarly, it is the only dimension where the disk is a polydisk. This indicates that complex 

analysis, and in particular winding numbers and the Cauchy integral formula, may be used.



A Geometric Approach

Let the volume be fixed =V, and then the geometric problem is to minimize                                          

over domains with connected, twice differentiable, boundary.

We want to show that a minimizer of this functional is a ball with volume V.

If E is a minimizer then 

The first variation of area of a submanifold with normal vector field v along a vector field 

X=X(x,t) with corresponding flow Φ(x,t) is  



A Geometric Approach Pt. 2

Theorem: For any                                 there exists vector fields with flows satisfying the 

volume preserving property such that

Corollary: If E minimizes the area-volume functional then it has constant mean curvature

Theorem: If F is a closed, connected hypersurface with constant mean curvature then it is a 

sphere

Corollary:If E minimizes the area-volume functional then it is a ball



Fourier Series and Derivatives

Let f be a continuously differentiable function on the interval [0,1] with f(0)=f(1), then its Fourier 

series is 

Then it holds that , for n≠0 

More generally, for f as above on the interval [0,L] with f(0)=f(L) it holds that



Fourier Series and Derivatives Pt. 2

Let f be a continuously differentiable function on the interval [0,1] with f(0)=f(1), then its 

Parseval’s identity implies

And



Wirtinger’s Inequality

Assume now in addition that

We have by continuity of f that

It holds then that

Note that if we subtract the left side from the right side of the inequality, we see that equality 

holds iff all fourier coefficients vanish for |n|>1    



Green’s Theorem

Note that by Stokes’ theorem it holds that for

Where the last integral is taken in the counterclockwise sense.

 Now,  if we put f=(-y,x) then 



Isoperimetric Inequality and Fourier Series

We first assume that ∂E can be representing by a simple curve c=(x,y) moving counterclockwise that is: 
continuously differentiable, c(0)=c(1)(x(0)=x(1) and y(0)=y(1)), of unit length, and parameterized with 
respect to arclength.    

Note that  depends on the position of E, so we may translate it so that both are 
0.

Then Green’s theorem implies 

Note that the last inequality comes from Wirtinger applied to each coordinate function

However, then we must have that, by the equality case in Wirtinger and symmetry, that the overall 
equality holds iff  



The Federer-Fleming Theorem

Let     be the minimum of the area-volume functional, which we 

know exists now in dimension 2,  and define  

A theorem of Federer-Fleming states that the two constants are equal.


